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Ronald C King 
Mathematics Department, University of Southampton, Southampton SO9 SNH, UK 

Received 26 February 1985 

Abstract. Young tableaux and Schur functions are used to analyse the angular momentum 
eigenstates of multiparticle configurations. The method is based on the plethysms governing 
the restriction from SU(2j+ 1) to SU(2). Certain conjectured identities between such SU(2) 
plethysms are proved and generalised. Fixed symmetry generating functions are specified, 
and some infinite Schur function series are introduced and a connection is made with 
Macdonald's identities. 

1. Introduction 

It is well known that the classification of the various angular momentum eigenstates 
of a multiparticle configuration of identical electrons or nucleons can be accomplished 
group theoretically (Racah 1949, Jahn 1950, Flowers 1952, Judd 1962, Wybourne 1970). 
The essence of this problem is the decomposition into irreducible representations { I }  
of the representation { m } O { v }  of SU(2) in accordance with the formula 

b " 4 = C  GLJO. (1.1) 
I 

The notation adopted here is that of Littlewood (1950a, b),  whereby { m } O { v }  is the 
plethysm corresponding to that part of the nth tensor power of the irreducible rep- 
resentation { m} of SU(2) whose symmetry is specified by the irreducible representation 
( v )  of the symmetric group, S,, acting on the factors constituting the nth power. Thus 
v = (v,, v2, . . .) signifies a partition of n. The dimension of { m }  is m + 1 so that the 
corresponding value of the angular momentum of the individual particles is 2m. 
Similarly {I} has dimension I + 1 and the total angular momentum of the n particle 
state is 21. 

The literature (Murnaghan 1954, Hamermesh 1962, Wybourne 1970) contains 
several tabulations of these plethysms which have been studied in a number of different 
contexts. For example those plethysms { m } O { n } ,  for which v =  ( n )  is a one part 
partition, play a central role in invariant theory. A fundamental result in this connection 
is Hermite's law of reciprocity (Hermite 1854) which states that the number of invariants 
and covariants of degree m in a binary form of degree n is the same as the number 
of invariants and covariants of degree n in a binary form of degree m. This corresponds 
to the identity 

{ m } O { n }  = { n } O { m > ,  (1.2) 

as pointed out by Murnaghan (1951) who went on to give an additional identity 
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(Murnaghan 1954) 

along with the result 

This latter corresponds in atomic and nuclear spectroscopy to the well known 
equivalence between particles and holes (Wybourne 1969). 

More recently whilst studying generating functions for SU(2) plethysms Patera and 
Sharp (1981) conjectured the vali'dity of the identities 

{y + z - 1) 0 { x'} = {y + x - 1 } 0  { z') = { z + y - 1) 0 ( X L )  

= { x + z  - l)@{y") = { z + x -  1 } 0 { y ' }  = { x + y -  l}0{ZX}. (1.5) 

These generalise (1.2)-(1.4), each of which may be recovered from (1.5) with an 
appropriate choice of x, y and z. 

In this paper the validity of (1.5) will be established and generalised still further. 
This is done not with the intention of producing results of any great physical signifi- 
cance, but with a view to demonstrating the power of Schur function methods. In 
carrying out this analysis it is advantageous to use a more modern notation. To this 
end an attempt is made to adhere to the notation of Macdonald (1979) whose text 
incorporates implicitly various results required by theoretical physicists. 

In § 2 the notation for partitions, Young tableaux, plane partitions and Schur 
functions is introduced, culminating in specific formulae for the plethysms which serve 
to evaluate (1.1). These formulae are used in § 3 to prove the identities (1.2)-(1.5) 
which are generalised in § 4. One-to-one correspondences underlying (1.2) and (1.5) 
are described in § 5 and followed in § 6 by a short discussion and exemplification of 
fixed symmetry generating functions. A final connection is made in § 7 with certain 
infinite series of Schur functions and Macdonald's identities (1972). 

2. Young tableaux and Schur functions 

A partition A of length / ( A )  and weight IAl  (Macdonald 1979, p 1) is a sequence of 
lib) positive integers ( A l ,  A 2 , .  . . , Ai( , ) )  such that A l Z A 2 s . .  .aAl(,,>O and A l + A 2 +  
. . . + A l ( , , = j A / .  To each such partition there corresponds a Young diagram F ( A )  
consisting of IAl boxes arranged in / ( A )  left-adjusted rows of lengths A I ,  A 2 , .  , . , 
Identifying F ( A )  by the positions of the boxes which define it, we have 

The conjugate of a partition A is the partition A '  whose Young diagram F ( A ' )  is 
obtained from F ( A )  by interchanging rows and columns. Clearly / ( A ' )  = A I ,  / ( A )  = A;,  
I A ' l =  IAl  and 
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The Frobenius rank r(A) of A is the number of boxes in the main diagonal of F ( A ) ,  
that is the number of rows of F ( A )  such that A ,  L i. The Frobenius symbol specifying 
A can be written in the form A = ( a  I b )  = (a l ,  a 2 , .  . . , Q , ( ~ ) I  bl,  bZ, . . . , b,,,)) with ak = 
A k -  k and bk = A;- k for k =  1 , 2 , .  . . , r (A) .  Thus a,> a,>. . .> a,(,)LO and b,> b2> 
. . . > b r ( A ) a O .  It follows that r(A’)=r(A) ana ( A ‘ ) = ( a l b ) ’ = ( b l a ) .  

It is convenient to introduce the M complement of A which is the partition A *  
whose Young diagram F ( A * )  is obtained by deleting the boxes of F ( A )  from F ( A y ) ,  
left-adjusting the resulting rows of boxes and then top-adjusting the resulting columns 
of boxes. Thus 

F ( A * )  = {( i, j) I ( i ,  j )  E F ( A  y ) ,  ( M  - i + 1,  A I  - j  + 1 )  E F (  A ) }  

= { ( i , j ) I ( i , j ) E z 2 ,  I G ~ S A ~ - A ~ - , + ~ }  

= {( i , j )  I ( i , j )  E Z2, 1 S i G M - Ai}. (2.3) 

To illustrate this definition with an example taken from Macdonald (1971, pp 2, 3), 
if A =(5421) and M = 6  then A‘=(4331) and A*=(S2412). In Frobenius notation 
A = (421 (310), A ’ =  (3101421) and A *  = (431 1410). 

The following quantities may be associated with each Young diagram F ( A )  

and 

A A 

c ( A ) = n ( A ’ ) - n ( A ) =  c ( i , j ) =  c ( j - i )  
(61) ( I , ] )  

where c(  i , j )  and h( i, j) are known as the content and hook length, respectively, of the 
box of F ( A )  in the position specified by ( i , j )  (Robinson 1961, p 44, Stanley 1971b, 
Macdonald 1979, p 9).  The notation is such that the sums and products are carried 
out over all ( i ,  j) specifying the position of a box in F ( A ) .  

There exist various arrays consisting of numberings of the boxes of a Young diagram. 
Amongst these are the Young tableaux T,(A) obtained by inserting an entry v,( i , j )  
in the ( i ,  j ) th  box of F ( A )  for each ( i ,  j) in F ( A ) ,  subject to the constraints that each 
entry is taken from the set SM = { 1,2,  . . . , M }  and that the entries are non-decreasing 
across each row from left to right, and are strictly increasing down each column from 
top to bottom. Thus 

T , ( ~ ) = { v , ( i , j ) / v , ( i , j ) ~  S M ,  ( i , j ) c  F ( A ) ,  v a ( i , j + l ) a  v,(i,j),  v , ( i + l , j ) >  v,(i,j)} 

where a is an index labelling all possible numberings 7, leading to distinct Young 
tableaux. 

A second numbering scheme leads to plane partitions P,(A) obtained by inserting 
an entry & ( i , j )  in the (i , j) th box of F ( A )  for each ( i , j )  in F ( A ) ,  subject to the 
constraints that each entry is taken from the set S ,  = { 1,2,  . . . , N }  and that the entries 

(2.7) 
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are non-increasing across rows from left to right and down columns from top to bottom 
(Stanley 1971a). Thus 

P , ( ~ ) = { 5 , ( i , j ) l ~ , ( i , j ) ~ S N ,  ( i , j )E F ( A ) ,  La( i , j+1)<  L(i,j), ~ ( i + 1 , j ) ~ ~ ( i , A I  
(2.8) 

where now the index a is an index labelling all possible numberings 
distinct plane partitions. 

functions) (Stanley 197 1 a)  

leading to 

The importance of Young tableaux is that they serve to define Schur functions (S 

(2.10) 

with m k ( a )  equal to the number of entries q,( i, j) of T,(A) taking the value k. 

p 258), signified by 0 (Macdonald 1979, p 65), is such that 
The substitutional operation or composition known as plethysm (Littlewood 1950a, 

sv = (2.11) 

where the components y ,  of y are the summands of s A ( x ) ,  that is 

9 (2.12) = ( X m ( l )  X m ( 2 )  X m ( N ) )  , . . . ,  

where N is the number of distinct Young tableaux T,(A). 

M = 2 and A = ( m ) .  In such a case 
In what follows a special case of these expressions is required corresponding to 

sm(xl,x2)=x;1+x;1-1xz+x;1-~x:+. . . +xz" ,  (2.13) 

N = m + l  and 

s, 0 S m ( X l r  x2) = s,(x;l, x ; n - I x 2 , .  . . , xzm). (2.14) 

Introducing 

P = X l X 2  and q = x , x ; ' ,  (2.15) 

and making use of a known result for s,(q", q m - ' ,  . . . , 1) (Stanley 1971b, Macdonald 
1979, p 27) it follows that 

S m ( X 1 , X 2 ) = p " 2 ( q " 2 + q m / 2 - l + .  . . + q - " / ' )  (2.16) 
and 

(2.17) 

An alternative form of this last expression was given by Littlewood (1950b, p 276) and 
can be written as 
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3. Proof of SU(2) plethysm identities 

Returning to the problem motivating this study, Wybourne (1969) has stressed the fact 
that the SU(2) plethysm (1.1) corresponds precisely to the branching of the irreducible 
representation { v} of SU( m + 1) into irreducible representations {I} of SU(2), where 
the embedding of SU(2) in SU( m + 1) is governed by the existence of the irreducible 
representation {m} of SU(2) of dimension m + 1. 

The connection with the work of 9 2  then comes about through noting that the 
character in the irreducible representation {A}  of U ( M )  of a group element having 
eigenvalues e"] f o r j  = 1, 2 , .  . , , M is given by (Littlewood 1950a, p 183) 

{A}  = s*(x) with x, = e'*, for 1 S j S M .  (3.1) 

As is customary {A}  is used to specify both a representation and its character. 
It follows from the identification (3.1) and the definition (2.9) that the dimension 

of the irreducible representation { A }  of U ( M )  is given by N, the number of distinct 
Young tableaux T,(A). Moreover the corresponding embedding of U ( M )  in U ( N )  is 
such that the irreducible representation {v} of U ( N )  has a character, which when 
evaluated for elements of the subgroup U(M),  is given by the plethysm 

{ A ) O { v )  = s, 0 s A ( x )  with x =e'*, for 1 S J S  M. (3.2) 

In the case of the group SU(M) the character of the representation {A}  is again 
given by (3.1) subject to the constraint 

x lx2  . . . xM = exp[i( 41 + 42 + . . . + 4M)] = 1. 

Y l Y 2 .  * . Y N  = 1 

(3.3) 

(3.4) 
and there exists an embedding of SU(M) in S U ( N )  such that the representation { v} 
branches to { A } O { v }  with character given by (3.2), subject to (3.3). 

In the case of SU(2) and the representation { m }  (3.1) leads to the well known formula 

{ m }  = sm(xl, x2)  = s,(e"I, e'+>) = sm(e'+'2, 
- - e ' (m/2J+ + e  l(m/2-1)+ +, . , + e - ~ ( m / 2 J +  

This constraint then ensures that 

, . . + e-'Jd, (3.5) 
where j = m / 2  is the conventional angular momentum label and 4, the class parameter, 
is an angle of rotation. In this case N = m + 1. 

- - elJ6 + el(l-l)d + 

Reverting to the variables of (2.15) 

p = l  and q =e'* (3.6) 

{ m} = q m / ' +  qm12-1-t , . . + q - m / 2  (3.7) 

so that (3.1) and (3.2) give in conjunction with (2.16), (2.17) and (2.18): 

and 

(3.9) 



2434 R C King 

A special case of (3.8) immediately yields 

-mn/2(1-qm+l)(l-qm+2) . . . (  l -q"+")  
{ m > O I n ) =  q 3 ( l - q ) ( l - q 2 ) .  . . (1-q")  

(3.10) 

from which Hermite's law of reciprocity, (1.2), follows at once (Elliott 1895, p 169). 
Moreover 

- ( m - n + l ) n / 2  (1 - qm-"+Z)(l- qm-"+3) . . . (1 - q m + l )  
(1 - q " ) ( l -  q " - ' ) .  . . (1 - q )  = 9  

thus proving the validity of (1.3) and (1.4). 
Finally, 

= q-xyz'2G(x,y, z) ,  (3.12) 

where, as pointed out by Stanley (1971b), G(x,  y ,  z) is the generating function derived 
by MacMahon (1916, p 243) for plane partitions Pa( T )  with s y  rows and sx columns, 
with largest part s z .  This generating function is necessarily symmetric under all 
permutations of x, y and z. This can be seen explicitly from the expression (Macdonald 
1979, p 48) 

Alternatively use may be made of (3.9) to show that 

{ y + z - l } @ { x ' }  

(3.13) 

(3.14) 

where 

(1  - q " ) !  = (1 - q " ) ( l  - q m - ' ) .  . . (1 - 4 )  

The limit as q +  1 of (3.13), which gives the dimension of the representation { x ' }  in 
the group SU(y + z ) ,  formed part of the original plausibility argument for the conjec- 
tures (1.5) (Patera and Sharp 1981). It is now clear from (3.14)' or equivalently from 
(3.12) with G(x, y, z) given by (3.13), that { y +  z - I } O { x j }  is totally symmetric under 
permutations of x, y and z. This proves the validity of (1.5). 



Young tableaux, Schur functions and  SU(  2 )  plethysms 243 5 

4. Further SU(2) plethysm identities 

It should be noted that all the identities (1.2)-( 1.5) can be generated from the formulae 

{ m ) O { v )  = {m)O{v*> (4.1) 

{ m ) O { v )  = { n } O { v ’ }  (4.2) 

and 

where v* is the ( m  + 1)-complement of v, and v’ is the conjugate of v. It is of interest 
to explore the range of validity of these formulae and in the case of (4.2) to determine 
the appropriate relationship between m, n and v. 

In fact (4.1) is valid for all partitions v and corresponds to the well known 
equivalence between particles and holes in atomic and nuclear spectroscopy (de Shalit 
and Talmi 1963). To establish this result it is only necessary to consider the relationship 
between the Young tableaux To( v) and To( v*) of v and v*. It is easy to see that there 
exists a one-to-one map from T,( v )  to T,( v*). This is constructed as follows. If the 
entries in the j th  column of To( v )  constitute the set Sj = { v,( i, j) 1 1 G i S A:} then the 
corresponding complementary Young tableau To( v*) is constructed by placing in the 
( v l  -j+ 1)th column entries taken from the set S,* complementary to Sj in the set 
S = {1,2, . . . , m + 1). Carrying out this operation for all j = 1, 2, . . . , v l  gives the 
required map from T,( v )  to To( v*). In the case v = (32) and m = 3 this is exemplified 
by the correspondence 

T(v) = 123- T(v*) = 113. 
24 234 

4 

More generally this argument leads to the result 

SA(X)  = (x1x2 . .  . XM)^ls**(x-’) (4.3 1 
where x = (xlxz,. . . , xM) and x-’ = (x;’, x;’, . . . , x z ) .  As a special case 

sm(xI, ~ 2 )  = (XIX2)msm(X;1, x;’). (4.4) 

In the case of SU(2) plethysms for which xlxz = 1 this implies the validity of (4.1) for 
all v and m with v* the ( m  + 1) complement of v. 
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As far as (4.2) is concerned the key result (2.17) can be written in the form 
1 

where in Frobenius notation v = ( a  I b ) .  In order to determine a relationship of the 
type (4.2) it is necessary to relate this expression to a similar one appropriate to 
v' = ( b  I a) .  However 

(1 - q m + a k + l  )( 1 - q m + , k )  . . . (1 - q m - b k + l )  

- - (1 - q n i b k + ' ) ( 1  - q n + b k )  . . . (1 - q n - ' k + ' )  for k = 1,2 , .  . . , r ( v )  

if and only if 

( n - m ) =  d = dk = U k  - bk for k = 1,2, . . . , r( v). 

Denoting partitions which satisfy this condition by K' rather than v, so that 

K=(a i ,a2  , . . . , a ~ ~ K )  l a i - d , ~ 2 - d , . . . , a r ( K ) - d ) ,  

t(m-n)lKI- n(K)+n(K') = -;dlKI+c(K) =o.  

( x1x2)-"K1'2 s, 0 sm(x1x2) = (X,X2)-n'K"2sK.~ sm(x1x2). 

it is not difficult to see that 

Thus (4.7) yields the result 

Correspondingly 

{ y +  Z -  ~ } O { K }  = { x + z -  ~ } O { K ' }  

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

for all z, provided that K is of the form (4.10) and x = a, + 1 and y = b ,  + 1 = a, - d + 1. 
This is the required generalisation of an identity contained in (1.5) and gives the range 
of validity of (4.3), namely that specified by (4.9). 

5. One-to-one correspondence 

The derivation of the result (4.1) presented in § 4 has the merit of involving a one-to-one 
correspondence between the contributions to {m}O{ v} and {m}O{ v*}. This explains 
the existence of the identity by relating it directly to the equivalence between particles 
and holes, an explanation already given by Wybourne (1969) for the identity (1.4). It 
would be desirable to establish other one-to-one correspondences explaining the 
remaining identities of this paper, whether or not they have a physical interpretation. 

In the case of (1.2) there is a well known one-to-one correspondence due to Ferrers. 
The contributions to {m}O{n} = s, 0 s,(x,, x2) are found by enumerating the Young 
tableaux 

T ( n )  = 77(1,1)77(1,2). . . 77(1, n )  

Aj = m + 1 - ~ ( 1 , j )  

(5.1) 

(5.2) 

with 1 s 77( 1, 1) s q( 1,2)  S .  . . < q( 1, n) s m + 1. Setting 
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yields a partition A whose conjugate A ’  has parts 

AJ=n+l-((l,j) 

where 1 s t(1,l) < ((1,2) s . .  . s ((1, m) d n + 1. Hence 

(5.3) 

T ( m )  = 5(1,1)5(1,2). . * 431, m )  (5.4) 

is a Young tableaux giving a contribution to { n } O { m }  = s, 0 s,(xlr xz). These transfor- 
mations are illustrated in the case m = 6 and n = 3 by the example 

T (  n )  = 223 t) A = (5*4) f, A ‘  = (342) t) T (  m )  = 1 1  112. ( 5 . 5 )  

The existence of this map, which is one-to-one, provided an early proof of Hermite’s 
law of reciprocity (1.2) (Elliott 1895, p 160). 

The generalisation of this result which leads directly to (1.5) comes about by 
mapping the set of Young tableaux T , ( x y )  contributing to { y +  z - l}O{xy} = 
sx’ 0 s ~ + ~ - ~ ( x ~ ,  x2) to the set of plane partitions Pa(..) for all partitions T for which 
I (  T )  S y ,  I (  T ‘ )  s x. The map is such that if v,( i ,  j )  is the ( i ,  j ) th  entry in T,(x y ,  then 
the ( i ,  j ) th  entry of P,(T)  is given by 

5, ( i ,  j ) = z + i - 7, ( i ,  j ) . (5.6) 

Notice that (5.2) is just a special case of this with i = 1. Taking x = 3, y = 2 and z = 4 
the map from T , ( x y )  to P,(T)  is illustrated by 

T,(32) = 1120Pa(32)=443 
246 42 

( 5 . 7 )  

where as is usual zero entries of P,(T)  are ignored. For given x, y and z such maps 
are one-to-one. 

Associated with any plane partition Pa( T )  is a three-dimensional partition each of 
whose entries is 1. This three-dimensional partition has six aspects (MacMahon 1916, 
p 179) which define six plane partitions. They are obtainable from Pa ( T )  through the 
action of a group of operations generated by interchanging rows and columns of a 
plane partition and forming the conjugate of each and every ordinary partition constitut- 
ing a row of the plane partition (Stanley 1971b). For example the six plane partitions 
corresponding to (4.7), all related by these operations, are 

443 3332 221 44 32 2222 
42 2211 221 42 32 2211 

211 3 31 1 1 1  
21 21. 

Recalling that in this example x = 3, y = 2 and z = 4 the corresponding contributions 
to the plethysms of (1.5) are specified by the Young tableaux 

112 1112 112 1 1  12 1 1 1 1  
246 3344 223 24 23 2233 

344 41 35 4445 
456 56. 

The appropriate values of M for these terms are 

6 5 6 7 7 5 



2438 R C King 

with each entry 7 giving rise to a factor 

XM-v  x2 ? - I =  q ( M + l ) / 2 - v  

The total contribution corresponding to each of these Young tableaux is then seen to 
be q 5 ,  confirming not only that the terms are in a one-to-one correspondence but also 
that they give identical contributions to the plethysms (1.5). 

Unfortunately it does not seem possible to give a physical interpretation of this 
one-to-one correspondence nor does it seem easy to establish any one-to-one correspon- 
dence underlying the more general result (4.13). 

6. Generating functions 

Whilst the emphasis has been placed here on various relationships between plethysms 
it should be emphasised that all SU(2) plethysms { m } O { v }  may be evaluated using 
(3.8) or the equivalent formula obtainable from (2.18) (Prasad et a1 1974). In fact 
(3.7) with m replaced by 1 gives 

so that the plethysm coefficients appearing in (1.1) are given by 

where I . .  . l o  signifies the coefficient of qo in the expression . . . . It then follows that 
the fixed symmetry generating functions introduced by Patera and Sharp (1981) are 
given by 

G,(M, L )  = 1 GLmMmL1 
1. m 

By way of illustration, if v = (2*) the factors m + 1 - i + j  and h (  i , j )  are m ( m  + 1) and 
32, ( m  - 1)m and 21 respectively, whilst 1 V I  = 4 and n( v )  = 2. 

Thus 

1 1 
G22( M, L )  = 

(1 - q”2L) (1 - q2)2( 1 - 43)  



Young tableaux, Schur functions and S U ( 2 )  plethysms 2439 

in agreement with the result of Patera and Sharp (1981). 

7. Schur function series 

The set of partitions K = ( a  1 b) which satisfy (4.9) for some fixed integer d together 
with the partition (0) may be used to specify a family of infinite S function series 

which for various d and k ( K )  have already appeared in the literature. To be precise 

for k ( ~ )  = 1~1/2 

for & ( K )  = 1 ~ 1 / 2  

K-1= A, 

K+I = C, 

for k( K )  = f ( l ~ l +  r(K)) 

for k( K )  = ~ ( I K I  - r (  K ) )  

KO= E, 

KO= G, 

where A, C, E and G are infinite S function series which appear in a study of branching 
rules for various group-subgroup de'compositions (King 1975) and in a corresponding 
analysis of root systems (Macdonald 1981, p 46). 

The constraints (4.9) appropriate to the partitions ( K )  are such that a number of 
quantities of interest associated with group representations specified by K may be 
readily evaluated. Perhaps most striking of all the second Casimir operator eigenvalues 
are given for each of the classical groups by 

U( N )  C2{K) = (1/2N)(N+d)lKI (7.2) 

S U N )  C 2 { K ) =  ( 1 / 2 ~ ) [ ( ~ + d ) l K l - ( 1 / ~ ) l K 1 2 1  (7.3) 

O( N )  (7.4) 

SP(N) (7.5) 

c2[ K ]  = [ 1/2( N - 2)]( N + d - 1)1 K I 
c2( K )  = [ 1/2( N + 2)]( N + d + 1)1 K 1 .  

Furthermore the dimensions of the corresponding irreducible representations are given 
by (El Samra and King 1979) 

K 

U( N )  and SU( N )  & ( K ) =  n ( N - i + j ) / H ( K )  
( i , j )  

(7.6) 

D,( K )  = fi ( N  + d + 1 + h (  i, j ) )  fi ( N  + d + 1 - h( i, j ) ) /  H (  K )  (7.8) 
( i . 1 )  ( i J )  

SP( N )  

where H ( K )  is defined by (2.6). 
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As a small application of these points it is worth noting that the infinite series Kd 
appear implicitly in Macdonald’s identities (Macdonald 1972). For example in the 
case of the root system BI associated with the group S0(21+ 1) 

P 

7) (x )2 i2+‘  = n (1 - X n ) 2 1 2 + /  = c (-l)’a”2D21+l[.]Xc2[Q’. (7.9) 
n = l  a a A  

Since in this case we have A = K-l and therefore d = -1 it follows that: 

(7.10) 

In evaluating this expression all terms a appearing in the infinite series are to be 
included whether or not they specify irreducible representations of S0(21+ 1). 
However, this raises no problem since the corresponding dimensions D21+l[a] are 
defined in all cases by (7.7) with d = -1 and N = 21+ 1. It is not necessary to use 
modification rules to convert [a] to a standard representation label (King 1975) 
although they may be used to recover from (7.9) the sums of those particular representa- 
tion labels U = ( uluZ . . . v I )  specified by Macdonald (1972). 

Similar results apply to several other of Macdonald’s identities. 
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